

Client Project Information

Project ID: 60566335 Project Description: Portland Harbor Pre- Remedial Design Investigation & Baseline Sampling Contact: Amy Dahl

ALSE Project Information

Project ID: AECOM100

Contact: Whitney Davis Submission ID(s): L2125039

Final Package Review by:

Date Reviewed:

25-Jul-18

SECTION 1: PROJECT NARRATIVE

ALSE Project Information

Project ID: AECOM100

Contact: Whitney Davis Submission ID(s): L2125039 **Client Project Information**

Project ID: 60566335

Project Description: Portland Harbor Pre- Remedial Design Investigation & Baseline Sampling

Contact: Amy Dahl

Analytical Method: Chlorinated Pesticides by EPA 1699 (modified)

			Date	Date	Date	Date
ALS Sample ID	Client Sample Descriptions	Matrix	Sampled	Received	Extracted	Analyzed
L2125039-1	NIST 1944	Sediment	n/a	n/a	2018-Jul-06	2018-Jul-20
L2125039-2	NIST 1944 Duplicate	Sediment	n/a	n/a	2018-Jul-06	2018-Jul-20
WG2815918-1	Laboratory Method Blank	QC	n/a	n/a	2018-Jul-06	2018-Jul-20
WG2815918-2	Laboratory Control Sample	QC	n/a	n/a	2018-Jul-06	2018-Jul-20

Comments and Notes:

a) Sample Integrity:

The NIST reference material has been refrigerated since receipt. It has not exceeded its expiry date of 31 March 2027.

b) Extraction and Cleanup:

The NIST material was extracted overnight by soxhlet extraction technique using dichloromethane as the extracting solvent. The extract was cleaned by silica gel column chromatography prior to instrumental analysis.

c) Instrumental Analysis:

Extraction standard recovery limits are listed herein have been derived from those recommended in EPA method 1699. The lower acceptance limit of 47% for 4,4'-DDE-13C12 has been found not to represent observed recoveries and this lower limit will soon be revised based upon historical data. On this data set, the 1st of the duplicates gave a recovery slightly below the listed acceptance limit. Due to isotope dilution technique, this apparent excedence is not expected to have a significant impact on data quality Moisture content was assumed to be 1.3% as esimtated in NIST 1944 CoA.

No other criteria failures or exceedances.

I certify that this data package is in compliance with the terms and condition of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this data package (hardcopy and/or electronic version) has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Reviewer and Title

2018-Jul-25 Date

SECTION 2: DATA SUMMARY REPORT

1435 Norjohn Court, Unit 1, Burlington, ON, Canada L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567

	Certi	ficate of Analysis	
ALS Project Contact:	Whitney Davis	Client Name:	
ALS Project ID: ALS WO#:	AECOM100 L2125039	Client Address:	1111 Third Avenue, Suite 1600 Seattle, WA 98101
Date of Report			United States
		Client Contact:	Amy Dahl
		Client Project ID:	60566335
COMMENTS:	Chlorinated Pesticides by	EPA 1699 (modified)	
COMMENTS.	Chlorinateu resticides by	LFA 1055 (mounieu)	
Samples were analyzed by isoto			
-		<pre>xpected due to the istope dilution techniqu C-13 labelled targets prior to extraction - p</pre>	
		nt by other standard methods for environe	
	\bigcirc		
	I A M	Gest	
	K.17. (
Certified by:	Ron McLeod, PhD		
		cial Chemistries, Life Sciences	

Results in this certificate relate only to the samples as submitted to the laboratory. This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd.

		ALS Life	sciences		
	Sa	ample Analysis	summary Report		
Sample Name	NIST 1944	% of Ref Value	NIST 1944 Duplicate	% of Ref Value	Ref Values
ALS Sample ID	L2125039-1		L2125039-2		
Sample Size	2.01		2.02		
Sample size units	g		g		
Percent Solids	98.7%		98.7%		
Sample Matrix	Sediment		Sediment		
Sampling Date	n/a		n/a		
Extraction Date	6-Jul-18		6-Jul-18		
Target Analytes	ng/g	%	ng/g	%	ng/g
2,4'-DDE	23.0	121	23.6	124	19.0
4,4'-DDE	83.4	97	80.9	94	86
2,4'-DDD	77.8	205	57.8	152	38
4,4'-DDD	139	129	117	108	108
4,4'-DDT	189	111	199	117	170
Extraction Standards	% Rec		% Rec		
4,4'-DDE, 13C12-	44		62		
4,4'-DDD, 13C12-	37		44		
4,4'-DDT, 13C12-	22		26		

	ALS Life sciences									
	Quality Control Summary Report									
Sample Name	Method Blank La	aboratory Control Sample								
ALS Sample ID	WG2815918-1	WG2815918-2								
Sample Size	2.00	1.00								
Sample size units	g	n/a								
Percent Solids	n/a	n/a								
Sample Matrix	QC	QC								
Sampling Date	n/a	n/a								
Extraction Date	6-Jul-18	6-Jul-18								
Target Analytes	ng/g	% Rec								
2,4'-DDE	< 0.0049	101								
4,4'-DDE	0.0350	99								
2,4'-DDD	<0.015	107								
4,4'-DDD	<0.010	96								
4,4'-DDT	<0.013	96								
Extraction Standards	% Rec	% Rec								
4,4'-DDE, 13C12-	84	82								
4,4'-DDD, 13C12-	82	89								
4,4'-DDT, 13C12-	84	88								

							_ife sciences		
					S	ample	Analysis Report		
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	NIST 1944 L2125039-1 EPA 1699 (mod) Sample Sediment						Sampling Date Extraction Date Sample Size Percent Solids Split Ratio	n/a 6-Jul-18 2.01 g 98.7% 1	Approved: <i>R. Bakthiari</i> e-signature 20-Jul-2018
	boumont						opint natio	•	20 54 2010
Run Information Filename Run Date Final Volume Dilution Factor Analysis Units		Run 1 6-180719E 20-Jul-18 1020 u 1 ng/g	14:55						
Instrument - Column		HRMS-6 F	IP5MSUS	R160544H					
		Ret.	Conc.	EDL	EMPC				
Target Analytes		Time	ng∕g	ng/g Flags	ng/g	LQL			
2,4'-DDE		20.98	23.0	0.051		1.0			
4,4'-DDE		21.91	83.4	0.033		1.0			
2,4'-DDD		22.15	77.8	0.052		1.0			
4,4'-DDD		23.11	139	0.038		1.0			
4,4'-DDT		24.17	189	0.054		1.0			
Extraction Standards	ng								
4,4'-DDE, 13C12-	125	21.90	44	47-160					
4,4'-DDD, 13C12-		23.11	37	5-150					
4,4'-DDT, 13C12-	125	24.17	22	5-120					
EDL LOL M U		Lower Qua Indicates t	ntificatio hat a pea		n the lowes ually integ	st calibrati rated.	easured background noise fo on level corrected for sample e EDL.	0 1	
L		indicates th	hat a tarc	get analyte was o	detected be	elow the c	alibrated range.		
R			-				did not meet the acceptance	ce criterion.	
В						-	eater than 10% of the samp		
EMPC		Estimated	Maximum	n Possible Conce	ntration -	elevated c	letection limit due to interfer	ence or positive id criterion failu	re

				ŀ	ALS I	Life sciences	ALS Life sciences										
				S	ample	Analysis Report											
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	NIST 1944 (Duplicate) L2125039-2 EPA 1699 (mod) Sample Sediment)				Sampling Date Extraction Date Sample Size Percent Solids Split Ratio	n/a 6-Jul-18 2.02 g 98.7% 1	Approved: <i>R. Bakthiari</i> e-signature 20-Jul-2018									
Run Information	Run 1																
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column	1020 1 ng/g	18 15:29	SR160544H														
	Re	t. Conc.	EDL	EMPC													
Target Analytes	Tim	e ng∕g	ng/g Flags	ng∕g	LQL												
2,4'-DDE	20.9	9 23.6	0.011		1.0												
4,4'-DDE	21.9	1 80.9	0.035		1.0												
2,4'-DDD) 22.1	6 57.8	0.055		1.0												
4,4'-DDE) 23.1	2 117	0.070		1.0												
4,4'-DD	24.1	8 199	0.076		1.0												
Extraction Standards	s ng																
4,4'-DDE, 13C12	- 125 21.9	1 62	47-160														
4,4'-DDD, 13C12	125 23.1	1 44	5-150														
4,4'-DDT, 13C12	- 125 24.1	7 26	5-120														
EDI LQI N	Lower (I Indicate	Quantifications that a pea		n the lowe ually integ	st calibrati rated.	easured background noise fo on level corrected for sample le EDL.											
	J indicate	es that a tar	get analyte was o	detected b	elow the c	alibrated range.											
E	3 Indicate	es that this	target was detect	ted in the	olank at gi	reater than 10% of the samp	le concentration.										
EMPO	: Estimat																

SECTION 3: METHOD SUMMARY

OC Pesticide METHOD SUMMARY Method EPA 1699

Introduction:

This summary is to provide ALSE Burlington OC pesticide method details in order to provide persons reviewing or validating this data package sufficient information to re-construct the sample calculation, data verification and review. It incorporates the analysis of organochlorine pesticides via EPA method 1699. Deviations from this reference method are documented in ALS Standard Operating Procedures (available upon request) and in this Method Summary.

Any deviations to what is listed herein or in the ALS Standard Operating Procedures would be listed in the project narrative.

To avoid the confusion and conflicting nomenclature within the performance based methods, we have defined the labeled standards in terms relating to the time of addition to the sample or extract. Therefore;

- Laboratory Surrogate (when provided/requested by the client) are added prior to sample extraction
- The Field or Sampling Standards (where used) are added prior to field sampling
- The Extraction Standards are added prior to extraction
- The GPC Recovery Standard is added (when used) prior to Gel Permeation Chromatographic cleanup
- The Clean-up Standards (where used) are added prior to extract clean-up
- The Injection Standards are added prior to extract injection.

Additional method information, such as Instrumental Descriptors, is documented in ALS Standard Operating Procedures and available upon request.

Calibration Standard Levels:

Seven levels of standard are available for calibration as listed in Table 1. These targets give a wide range of responses on the analytical instruments, thus it is expected that for any given target, either the lowest standard level(s) or the highest standard level(s) may be excluded due to poor response, poor linearity, or detector saturation. With seven levels of standard, it is expected that at least 5 points can be used for calibration for each target.

Table 1: Calibration Standards (conc in ng/mL)

	Table 1: Calibratic	CS1	CS2	CS3	CS4	CS5	CS6	CS7
Natives	Hexachlorobutadiene	2	7.5	20	50	150	400	1200
	1,2,4,5-Tetrachlorobenzene	2	7.5	20	50	150	400	1200
	1,2,3,4-Tetrachlorobenzene	2	7.5	20	50	150	400	1200
	Pentachlorobenzene	2	7.5	20	50	150	400	1200
	Hexachlorobenzene	2	7.5	20	50	150	400	1200
	3,4,5,6-Tetrachloroveratrole	2	7.5	20	50	150	400	1200
	Pentachloroanisole	2	7.5	20	50	150	400	1200
	alpha-BHC	2	7.5	20	50	150	400	1200
	beta-BHC	2	7.5	20	50	150	400	1200
	gamma-BHC	2	7.5	20	50	150	400	1200
	delta-BHC	2	7.5	20	50	150	400	1200
	Pentachloronitrobenzene	2	7.5	20	50	150	400	1200
	Heptachlor	2	7.5	20	50	150	400	1200
	Aldrin	2	7.5	20	50	150	400	1200
	4,4'-DDNU	2	7.5	20	50	150	400	1200
	Dacthal	2	7.5	20	50	150	400	1200
	Chlorpyrifos	10	37.5	100	250	750	2000	6000
	Octachlorostyrene	2	7.5	20	50	150	400	1200
	Heptachlor Epoxide B	2	7.5	20	50	150	400	1200
	Heptachlor Epoxide A	2	7.5	20	50	150	400	1200
	Oxychlordane	2	7.5	20	50	150	400	1200
	4,4'-DDMU	2	7.5	20	50	150	400	1200
	trans-Chlordane	2	7.5	20	50	150	400	1200
	cis-Chlordane	2	7.5	20	50	150	400	1200
	trans-Nonachlor	2	7.5	20	50	150	400	1200
	Dieldrin	2	7.5	20	50	150	400	1200
	Endrin	2	7.5	20	50	150	400	1200
	cis-Nonachlor	2	7.5	20	50	150	400	1200
	Endosulfan I	2	7.5	20	50	150	400	1200
	Endosulfan II	2	7.5	20	50	150	400	1200
	Endosulfan Sulfate	2	7.5	20	50	150	400	1200
	24'-DDE	2	7.5	20	50	150	400	1200
	44'-DDE	2	7.5	20	50	150	400	1200
	24'-DDD	2	7.5	20	50	150	400	1200
	44'-DDD	2	7.5	20	50	150	400	1200
	24'-DDT	2	7.5	20	50	150	400	1200
	44'-DDT	2	7.5	20	50	150	400	1200
	Endrin Aldehyde	2	7.5	20	50	150	400	1200
	Endrin Ketone	2	7.5	20	50	150	400	1200
	Methoxychlor	2	7.5	20	50	150	400	1200
	Dicofol	20	75	200	500	1500	4000	12000
	Mirex	2	7.5	20	50	150	400	1200
	Parlar-26	2	7.5	20	50	150	400	1200
	Parlar-50	2	7.5	20	50	150	400	1200
	Parlar-62	2	7.5	20	50	150	400	1200

Laboratory Surrogate	1,3-Dibromobenzene	20	20	20	20	20	20	20
	Endrin Ketone	2	7.5	20	50	150	400	1200
Field Surrogate	1,3,5-Tribromobenzene	20	20	20	20	20	20	20
	1,2,4,5-Tetrabromobenzene	20	20	20	20	20	20	20
	delta-BHC	2	7.5	20	50	150	400	1200
GPC Recovery Standard	13C12-PCB-133	100	100	100	100	100	100	100
Extraction Standard	13C6-Pentachlorobenzene	250	250	250	250	250	250	250
	13C6-Hexachlorobenzene	250	250	250	250	250	250	250
	13C6-alpha-BHC	250	250	250	250	250	250	250
	d6-gamma-BHC	250	250	250	250	250	250	250
	13C10-Heptachlor	250	250	250	250	250	250	250
	13C10-Oxychlordane	250	250	250	250	250	250	250
	13C10-trans-Nonachlor	250	250	250	250	250	250	250
	13C12-Dieldrin	250	250	250	250	250	250	250
	13C12-Endrin	250	250	250	250	250	250	250
	13C9-Endosulfan-II	250	250	250	250	250	250	250
	13C12-44'-DDE	250	250	250	250	250	250	250
	13C12-44'-DDD	250	250	250	250	250	250	250
	13C12-44'-DDT	250	250	250	250	250	250	250
	d6-Methoxychlor	250	250	250	250	250	250	250
	13C10-Mirex	250	250	250	250	250	250	250
Injection Standard	13C12-PCB-9	100	100	100	100	100	100	100
	13C12-PCB-52	100	100	100	100	100	100	100
	13C12-PCB-101	100	100	100	100	100	100	100

Calibration and Quality Control Limits

The calibration and QC Sample control limits are presented in Table 2 below. For the lowest standard used for initial calibration, and for each calibration verification CS3, the signal to noise ratio for each ion for both labelled and non-labelled analytes must be greater than or equal to 10:1

		0-111-			les and
			ration		amples
		Initial Cal.	Cal. Ver.	LCS	Samples
		%RSD	%Exp	% Rec	% Rec
Natives	Hexachlorobutadiene	35	70-130	5-200	
	1,2,4,5-Tetrachlorobenzene	35	70-130	5-200	
	1,2,3,4-Tetrachlorobenzene	35	70-130	5-200	
	Pentachlorobenzene	20	70-130	5-200	
	Hexachlorobenzene	20	75-125	10-150	
	3,4,5,6-Tetrachloroveratrole	35	70-130	20-200	
	Pentachloroanisole	35	70-130	20-200	
	alpha-BHC	20	75-125	50-120	
	beta-BHC	35	75-125	50-120	
	gamma-BHC	20	75-125	50-120	
	delta-BHC	35	75-125	50-120	
	Pentachloronitrobenzene	35	70-130	20-200	
	Heptachlor	20	75-125	50-120	
	Aldrin	35	75-125	50-120	
	4,4'-DDNU	35	75-125	20-160	
	Dacthal	35	50-150	20-200	
	Chlorpyrifos	35	75-125	19-163	
	Octachlorostyrene	35	70-130	50-175	
	Heptachlor Epoxide B	35	70-130	20-200	
	Heptachlor Epoxide A	35	75-125	50-120	
	Oxychlordane	20	75-125	50-120	
	4,4'-DDMU	35	75-125	20-160	
	trans-Chlordane	35	75-125	50-120	
	cis-Chlordane	35	75-125	50-120	
	trans-Nonachlor	20	75-125	50-120	
	Dieldrin	20	75-125	50-120	
	Endrin	20	75-125	50-120	
	cis-Nonachlor	35	75-125	50-120	
	Endosulfan I	35	75-125	50-120	
	Endosulfan II	20	75-125	5-200	
	Endosulfan Sulfate	35	75-125	50-200	
	24'-DDE	35	75-125	24-123	
	44'-DDE	20	75-125	50-120	
	24'-DDD	35	75-125	50-120	
	44'-DDD	20	75-125	42-120	
	24'-DDT	35	75-125	50-120	
	44'-DDT	20	75-125	50-120	
	Endrin Aldehyde	35	70-130	20-200	
	Endrin Ketone	35	75-125	50-134	
	Methoxychlor	20	75-125	50-120	
	Dicofol	35	50-150	20-200	
	Mirex	20	75-125	50-120	
	Parlar-26	35	70-130	20-200	
	Parlar-20 Parlar-50	35	70-130	20-200	
	Parlar-50 Parlar-62	35	70-130	20-200	
	Fallal-02	55	70-150	20-200	

Laboratory Surrogate	1,3-Dibromobenzene	35	50-150	50-150	40-120
. 0	Endrin Ketone		50-150	50-150	40-150
Field Surrogate	1,3,5-Tribromobenzene	35	50-150	50-150	60-120
	1,2,4,5-Tetrabromobenzene	35	50-150	50-150	60-120
	delta-BHC	35	50-150	50-150	60-120
GPC Recovery Standard	13C12-PCB-133	35	50-150	50-150	50-120
Extraction Standard	13C6-Pentachlorobenzene	35	70-130	5-120	5-120
	13C6-Hexachlorobenzene	35	70-130	5-120	5-120
	13C6-alpha-BHC	35	70-130	13-138	16-129
	d6-gamma-BHC	35	70-130	5-124	11-120
	13C10-Heptachlor	35	70-130	5-128	5-120
	13C10-Oxychlordane	35	70-130	5-144	23-135
	13C10-trans-Nonachlor	35	70-130	17-154	36-139
	13C12-Dieldrin	35	70-130	19-161	40-151
	13C12-Endrin	35	70-130	20-157	35-155
	13C9-Endosulfan-II	35	70-130	5-144	15-148
	13C12-44'-DDE	35	70-130	26-169	47-160
	13C12-44'-DDD	35	70-130	13-200	5-150
	13C12-44'-DDT	35	70-130	13-200	5-120
	d6-Methoxychlor	35	70-130	8-200	5-120
	13C10-Mirex	35	70-130	5-138	5-120

Additional Continuing Calibration Details:

After initial calibration is established, a CS4 standard is injected as a Continuing Calibration Verification (CCV) at the beginning of every 12 hour shift in which samples are analyzed. If the following performance criteria are met, analysis of samples may proceed:

- Ion abundance ratios are within their respective theoretical limits (see Table 3)
- All targets have a s/n ratio of at least 10:1
- The RT of each analyte is within 15 seconds of that in the initial calibration
- Endin and DDT breakdown is less that 20% (see Section 5.2.4.2)
- The %Diff is within the CCV limits (see Table 2)

If these performance criteria are not met, GC maintenance is performed or the system is adjusted and a new CCV is injected, or a new initial calibration is run.

Mid-run CalibrationVerification:

While the EPA 1699 does not require a post-run calibration verification standard to be run, it is recognized that responses and/or relative responses of some targets may change significantly during HRMS analysis due to sample related contamination of GC or MS components. This problem is compounded by chemical dissimilarities between some targets and their quantification reference standards in the case of internal standard quantification. Enhanced quantification and a measure of confidence in sample results obtained during an analytical shift can be attained by injecting a CS4 calibration verification (VER) standard in the middle of, and at the end of a 12-hour run, and quantifying samples against the average of bracketing calibration standards where improved results would be achieved.

a) Mid-Run VER:

If this analysis meets the performance criteria for a pre-run CCV, then all of the samples preceding the midrun VER can be quantified vs. the initial calibration, and analysis can proceed. If the mid-run VER does not meet pre-run CCV criteria, the preceding samples can be quantified vs. bracketing calibration runs (using the pre-run CCV and mid-run VER as a two-point calibration) and analysis can proceed, provided that the following criteria are met:

- Ion abundance ratios are within their respective theoretical limits (see Table 1) or within 15% of the ratios in the pre-run CCV

- All targets have a s/n ratio of at least 10:1
- The RT of each analyte is within 15 seconds of that in the initial calibration
- Endin and DDT breakdown is less that 20%
- The %RPD of the mid-run VER vs. the pre-run CCV meets the CCV %Diff limits (See Table 2)

If the mid-run VER does not meet the above criteria either, analysis cannot continue without corrective action (samples analyzed after the mid-run VER in an automated sequence must be re-analyzed). The samples preceding the failing mid-run VER may be flagged and reported, but must be assessed for impact on data quality:

- If a failing native target is present in any of the preceding samples above the Method Detection Limit (or above the client's lower required Detection Limit, if known), that sample must be re-analyzed for that target.

- If a failing native target's Estimated Detection Limit is above the Method Detection Limit (or above the client's lower required Detection Limit. if known) due to deterioration of system performance, that sample must be re-analyzed for that target.

a) Post-Run VER:

If this analysis meets the performance criteria for a pre-run CCV, then all of the samples preceding the post-run VER can be quantified vs. the initial calibration. If the post-run VER does not meet pre-run CCV criteria, the preceding samples can be quantified vs. bracketing calibration runs (using the post-run VER and mid-run VER as a two-point calibration) provided that the following criteria are met:

- Ion abundance ratios are within their respective theoretical limits (see Table 1) or within 15% of the ratios in the mid-run CCV

- All targets have a s/n ratio of at least 10:1
- The RT of each analyte is within 15 seconds of that in the initial calibration
- Endin and DDT breakdown is less that 20%
- The %RPD of the post-run VER vs. the mid-run VER meets the CCV %Diff limits (See Table 2)

If the post-run VER does not meet the above criteria either, the samples preceding the failing post-run VER may be flagged and reported, but must be assessed for impact on data quality:

- If a failing native target is present in any of the preceding samples above the Method Detection Limit (or above the client's lower required Detection Limit, if known), that sample must be re-analyzed for that target.

- If a failing native target's Estimated Detection Limit is above the Method Detection Limit (or above the client's lower required Detection Limit. if known) due to deterioration of system performance, that sample must be re-analyzed for that target.

Reporting Limits:

Unless indicated in the otherwise, native target data is reported down to 2.5:1 signal to noise for each isomer grouping for each extract injection. This is consistent to SW846 8290 defined protocols (i.e. EDL or Estimated Detection Limit) and is commonly applied throughout the industry to any and all performance based HRMS methods.

Method Blank:

The method blank levels must be below the response to the lowest calibration standard used for initial calibration.

MS/MSD (where required):

The % relative difference between the MS and MSD spike recoveries should be less than or equal to 20%.

Instrument/Run Performance Criteria:

a) Chromatographic Performance

For the DB-5 column, 44'-DDT and 24'-DDT (or the labelled analogues) must be uniquely resolved to a valley height of less than 60% of the shorter of the two peaks.

b) DDT and Endrin Breakdown

A custom standard (HROCP-GC_BD#1) is injected to measure the breakdown of endrin and DDT during the run. This standard must be injected at the beginning and end of each 12 hour shift, and it is also recommended that it be injected along with the mid-run CCV where used. This standard contains 13C12-4,4'-DDT, 13C12-endrin, and native endrin, endrin aldehyde and endrin ketone.

• For measurement of DDT breakdown, measure the concentration for 13C12-44'-DDE, 13C12-44'-DDD and 13C12-44'-DDT (the labelled DDT is part of the standard, and the labelled DDE and DDD are breakdown products). Calculate breakdown using the following formula:

13C12-44'-DDT % Breakdown =

<u>(concentration of 13C12-44'-DDD + concentration of 13C12-44'-DDE)</u> X 100% concentration of 13C12-44'-DDT

labelled DDT = part of standard; labelled DDE and DDD = breakdown products

 Additionally, measurement of endrin breakdown can be performed. For measurement of endrin breakdown, measure the concentration of endrin, endrin aldehyde, and endrin ketone (these natives are quantified by isotope dilution vs. the 13C12-endrin). Calculate breakdown using the following formula:

Endrin % Breakdown =

(concentration of endrin aldehyde + concentration of endrin ketone) X 100% concentration of endrin

If the breakdown of endrin and/or DDT exceeds 20% in a standard, the targets are decomposing on the inlet or column, and remedial action must be taken (inlet maintenance and trimming of the analytical column) before any valid sample data can be produced. If the breakdown of DDT or endrin in a sample exceeds 20% and there is that native in the sample above the MDL, that sample will have to be reanalyzed for that target (further cleanup or dilution of that sample is recommended before reanalysis). Breakdown exceedences can be ignored under the following circumstances:

- Where the endrin breakdown fails but DDT breakdown passes and where DDT and/or it's metabolites are the only targets.
- Where the DDT breakdown fails but endrin breakdown passes and where endrin and/or it's metabolites are the only targets.
- For the determination of other pesticide targets (i.e. non-DDT and non-Endrin and metabolite targets) which have a corresponding labelled extraction/internal standard of exactly the same isomer.

c) Mass Resolution:

At the beginning of and just following the end of each 12 hour run sequence, the instrument must be checked to demonstrate a resolution of 10,000 for each quantification window.

The maximum time between scans within a descriptor is 1 second.

Lock mass deviations to the average response must be less than or equal 20%.

Laboratory Duplicates:

The % relative difference between duplicates should be less than or equal to 25% but only where the response is greater than the low calibration standard.

Analyte Identification Criteria:

Ion Ratio Criteria

For all compounds, a pair of ions with a specific isotopic ratio are being monitored. To have a confirmed positive response to a native or labelled OCP, that ratio must be within the theoretical limits in Table 1, or within 15% of the observed values on the most recent CS4 analysis.

Signal to Noise Criteria

The signal to noise ratio for each quantification and confirmation ion for labelled and non-labelled analytes must be greater than or equal to 10:1 for the initial calibration CS1 and for each calibration verification CS4. For positive identification of a native target in a sample, both ions must have a s/n ratio exceeding 2.5:1.

Matched RT on Peak Maxima

The retention time (RT) of the peak maxima for each pair of quantification ions must be no more than 2 seconds (i.e. 2 scans) difference.

Expected Retention Time (RT)

The peak must be at the expected RT

- within -1/+3 seconds of the labelled standard for natives with their own 'C labelled standard
- within +/- 0.008 RRT units of the RRT in the most recent CS4 analysis for targets with their own ²H labelled standard

- within +/- 0.010 RRt units of the RRT in the most recent CS4 analysis for targets without their own labelled standard

As per EPA 1699 Sections 16.5-16.6, it is possible that not all of the positive ID criteria are met. If a pesticide is deemed to be present in this case by the experienced spectroscopist, the result may be flagged as "this result is unconfirmed and must not be used for permitting or regulatory compliance purposes". If the ion abundance ratio criteria are not met, the result must also include an "R" flag.

Table 3: Monitored Masses, Ion Abuncance Ratios, and Quantitation/RT References

		Quantification	Quantification	Quantitation	Confirmation	Theoretical lon	Ion Abundance
Entry	Native Standard	Method	vs. Entry #:	lon	lon	Abundance ratio	Ratio Tolerance
1	Hexachlorobutadiene	rel_int	52	259.8102	261.8072	1.25	0.25
2	1,2,4,5-Tetrachlorobenzene	rel_int	52	215.8881	217.8852	2.08	0.25
3	1,2,3,4-Tetrachlorobenzene	rel_int	52	215.8881	217.8852	2.08	0.25
	Pentachlorobenzene	rel_int	52	249.8491	251.8462	1.56	0.25
5	Hexachlorobenzene	rel_int	53	283.8102	285.8072	1.23	0.25
6	3,4,5,6-Tetrachloroveratrole	rel_int	54	275.9092	277,9063	2.08	0.25
7	Pentachloroanisole	rel_int	54	279.8597	281.8568	1.56	0.25
8	alpha-BHC	rel_int	54	218.9116	220.9086	2.1	0.25
9	beta-BHC	rel_int	55	218.9116	220.9086	2.1	0.25
10	gamma-BHC	rel_int	55	218.9116	220.9086	2.1	0.25
11	delta-BHC	rel_int	55	218.9116	220.9086	2.1	0.25
12	Pentachloronitrobenzene	rel_int	56	294.8342	296.8313	1.56	0.25
13	Heptachlor	rel_int	56	271.8102	273.8072	1.25	0.25
14	Aldrin	rel_int	57	262.857	264.854	1.56	0.25
15	4,4'-DDNU	rel_int	57	248.016	250.013	1.56	0.25
16	Dacthal	rel_int	57	331.8991	333.8961	2.08	0.25
17	Chlorpyrifos	rel_int	57	313.9574	315.9545	1.44	0.25
18	Octachlorostyrene	rel_int	57	342.779	344.7761	1.04	0.25
19	Heptachlor Epoxide B	rel_int	57	352.844	354.841	1.2	0.25
20	Heptachlor Epoxide A	rel_int	57	352.844	354.841	1.2	0.25
21	Oxychlordane	rel_int	57	386.805	388.802	1.02	0.25
22	4,4'-DDMU	rel_int	62	247.0081	249.0052	1.56	0.25
23	trans-Chlordane	rel_int	58	262.8571	264.8541	1.56	0.25
24	cis-Chlordane	rel_int	58	262.8571	264.8541	1.56	0.25
25	trans-Nonachlor	rel_int	58	262.8571	264.8541	1.56	0.25
26	Dieldrin	rel_int	59	262.8571	264.8541	1.56	0.25
27	Endrin	rel_int	60	262.8571	264.8541	1.56	0.25
28	cis-Nonachlor	rel_int	58	262.8571	264.8541	1.56	0.25
29	Endosulfan I	rel_int	61	276.8726	278.8697	1.56	0.25
30	Endosulfan II	rel_int	61	276.8726	278.8697	1.56	0.25
31	Endosulfan Sulfate	rel_int	61	276.8726	278.8697	1.56	0.25
32	24'-DDE	rel_int	62	246.0003	247.9974	1.56	0.25
	44'-DDE	rel_int	62	246.0003	247.9974	1.56	0.25
	24'-DDD	rel_int	63	235.0082	237.0053	1.56	0.25
35	44'-DDD	rel_int	63	235.0082	237.0053	1.56	0.25
36	24'-DDT	rel_int	63	235.0082	237.0053	1.56	0.25
37	44'-DDT	rel_int	64	235.0082	237.0053	1.56	0.25
	Endrin Aldehyde	rel_int	60	247.8521	249.8492	0.64	0.35
	Endrin Ketone	rel_int	60	247.8521	249.8492	0.64	0.35
	Methoxychlor	rel_int	65	227.1072	228.1106	6.2	0.35
41	Dicofol	rel_int	65	251.003	253.0001	1.56	0.35
42	Mirex	rel_int	66	271.8103	273.8073	1.3	0.25
43	Parlar-26	rel_int	66	304.9039	306.901	1.56	0.35
44	Parlar-50	rel_int	66	338.8649	340.862	1.25	0.35
45	Parlar-62	rel_int	66	338.8649	340.862	1.25	0.35

	Laboratory Surrogate						
46	1,3-Dibromobenzene	rel_int	67	233.868	235.8659	0.51	0.25
47	Endrin Ketone	rel_int	69	316.904	318.901	1.56	0.35
	Field Surrogate						
48	1,3,5-Tribromobenzene	rel_int	67	313.7764	315.7744	1.03	0.25
49	1,2,4,5-Tetrabromobenzene	rel_int	68	312.7686	314.7666	1.03	0.25
50	delta-BHC	rel_int	69	218.9116	220.9086	2.1	0.25
	GPC Recovery Standard						
51	13C12-PCB-133	rel_int	69	299.947	301.944	0.78	0.25
	Extraction Standard						
52	13C6-Pentachlorobenzene	rel_int	67	255.8693	257.8663	1.56	0.25
53	13C6-Hexachlorobenzene	rel_int	67	289.8303	291.8273	1.23	0.25
54	13C6-alpha-BHC	rel_int	67	224.9317	226.9287	2.1	0.25
55	d6-gamma-BHC	rel_int	67	223.943	225.94	2.1	0.25
56	13C10-Heptachlor	rel_int	68	276.8269	278.824	1.25	0.25
57	13C10-Oxychlordane	rel_int	68	396.8385	398.8355	1.02	0.25
58	13C10-trans-Nonachlor	rel_int	69	269.8804	271.8775	1.56	0.25
59	13C12-Dieldrin	rel_int	69	269.8804	271.8775	1.56	0.25
60	13C12-Endrin	rel_int	69	269.8804	271.8775	1.56	0.25
61	13C9-Endosulfan-II	rel_int	69	284.8995	286.8965	1.56	0.25
62	13C12-44'-DDE	rel_int	69	258.0405	260.0376	1.56	0.25
63	13C12-44'-DDD	rel_int	69	247.0483	249.0454	1.56	0.25
64	13C12-44'-DDT	rel_int	69	247.0483	249.0454	1.56	0.25
65	d6-Methoxychlor	rel_int	69	233.145	234.1484	6.2	0.35
66	13C10-Mirex	rel_int	69	276.8269	278.824	1.3	0.35
	Injection Standard						
67	13C12-PCB-9	abs_int	100	234.0406	236.0376	1.52	0.15
68	13C12-PCB-52	abs_int	100	301.9625	303.9597	0.77	0.15
69	13C12-PCB-101	abs_int	100	337.9206	339.9176	1.56	0.15

Data Calculations:

=

a) Analyte Concentrations:

The relative response factor of each target relative to the standard against which it is to be calculated is determined using the area responses of both quantification ions via equation 9.1.

In cases where a native target is calculated against an exact labelled analogue, the quantification will be considered to be by isotope dilution. In other cases, the quantification will be considered to be by internal standard.

RRF

 $(A1_s + A2_s) C_t$

 $(A1_t + A2_t) C_s$

Equ. 9.1

Where,

 $A1_t + A$. The areas of the two quantification ions for the target analyte

 $A1_s + A2_s =$ The areas of the two quantification ions for the labelled compound against which the target analyte will be calculated.

 C_t = The concentration in the calibration standard of the target analyte.

 C_s = The concentration in the calibration standard of the labelled compound against which the target will be calculated.

For all analytes to be quantified and from the initial calibration series of standard injections, a table of RRFs is prepared. The relative standard deviation (%RSD, or the coefficient of variance) is checked to confirm that appropriate method criteria has been met as listed in Table 3. The average of the five or six levels of for each analyte, RRF_{av} is applied for quantification of samples according to Equations 9.2 and 9.3 below.

Amount in sample (ng)	$(A1_{n} + A2_{n}) Q_{l}$ =	Equ. 9.2
Concentration in sample (ng/g or ng/L)	$= \frac{(A1_n + A2_n) Q_1}{(A1_1 + A2_1) (RRF_{av}) (W_s)}$	Equ. 9.3

Where,

Q_I = The amount (pg) of labelled compound added to the sample

 $W_s =$ The weight (g) or volume (l) of sample

b) Extraction, Clean-up, and Sampling Standard Recovery Calculation:

The extraction, clean-up, and sampling standard recoveries are determined by Equation 9.4 below.

% Recovery = (Amount in sample)/(Amount added to sample) X 100 Equ. 9.4

c) Estimated Detection Limit

 $EDL = \begin{array}{c} 2.5 \times H_x \times Q_{es} \\ ----- Equ. 9.5 \\ H_{es} \times W \times RFF_{av} \end{array}$

Where,

- EDL = estimated detection limit for native targets
- H_x = sum of the height of the noise level for each quantification ions for the unlabeled target
- H_{es} = Sum of the heights of responses of both quantification ions for the labelled extraction standard.
- W = weight of volume of sample
- RRF_{av} = average relative response factor
- Q_{es} = Amount of extraction standard added

Chromatogram Annotation Codes

All manually integrated peaks are expanded and reprinted with the following annotations:

SK111220MB

* Analyst Initials	AA
* Date	YYMMDD
* integration code	CC
The Syntax is:	Example:

AAYYMMDDCC

Code	Mnemonic	Description
MB	Manual Baseline	The peak was manually integrated because the initial baseline was determined incorrectly by the software
MS	Manual Split	The peak was manually integrated because the peak was incorrectly or not split by the software
MJ/MC	Manual Join/Manual Combine	The peak was manually integrated because the peak was split by the software and the peak should be integrated as a single peak
MA	Manual Add	The peak was manually integrated because the signal:noise ratio was judged to be >2.5
MD	Manual Delete	The peak was excluded because the signal:noise ratio was judged to be <2.5
MX	Manual Exclude	The peak was excluded due to an interference
MT	Manual Time	The peak retention time was manually chosen

The following explanatory annotation codes may appear on the chromatograms of peaks that have been reviewed:

Code	Mnemonic	Description
+	Detected Peak	A peak was detected at this mass and retention time that was above 2.5:1 signal to noise
<	Below Detection Limit	The signal at this mass and retention time was below 2.5:1 signal to noise
EMPC	Estimated Maximum Possible Concentration	The signal at this mass and retention time is an interference such that the target compound could not be confirmed
X-RT	Not Detected due to Retention Time non-conformance	The signal at this retention time could not be used to positively identify the target compound because of retention time non-conformance (apex of quantification and confirmation ions do not maximize within the same two seconds, or the retention time of the peak does not fall within the expected range with respect to its labeled analogue)
X-LOC	Not Detected due to interference from a higher level of chlorination	The signal at this retention time is attributable to a fragment from a co-eluting compound at a higher level of chlorination, and cannot be used to positively identify the target. The result is expressed as an Estimated Maximum Possible Concentration (EMPC)
X-DPE	Not Detected due to diphenyl ether interference	The signal at this retention time is attributable to interference from a chlorinated diphenyl ether, and cannot be used to positively identify the target. The result is expressed as an Estimated Maximum Possible Concentration (EMPC)
X-IF	Not Detected due to interference	The signal at this retention time is attributable to a co-eluting interference, and cannot be used to positively identify the target. The result is expressed as an Estimated Maximum Possible Concentration (EMPC)

SECTION 4: CALIBRATION DATA

Including:

for Multi-Point Calibration(s)

- Multi-Point Calibration Tables

- Individual Quantitation Reports

for Continuing Calibration(s) - Individual Quantitation Reports

ALS Life sciences

Calibration Summary Report

		Cal	ibratio	Julia		port				
Calibration Level	Filename	Run Date								
CS-1	6-180719B37	20-Jul-2018 10:	51							
CS-2	6-180719B46	20-Jul-2018 16:	02					_		
CS-3	6-180719B37	20-Jul-2018 10:	51					7	Approved:	R. Bakthiari
CS-4	6-180719B46	20-Jul-2018 16:	02							e-signature
CS-5										20-Jul-2018
CS-6										
CS-7										
				Pelativ	Resnon	se Factor	'e			
		00.4			e Respon			oo 7		04 B6B
	Target Analytes	CS-1	CS-2	CS-3	CS-4	se Factor CS-5	°S CS-6	CS-7	Mean	% RSD
	2,4'-DDE	1.423	1.479	CS-3 1.423	CS-4 1.479			CS-7	1.451	3%
	2,4'-DDE 4,4'-DDE	1.423 1.142	1.479 1.135	CS-3 1.423 1.142	CS-4 1.479 1.135			CS-7	1.451 1.139	3% 0%
	2,4'-DDE 4,4'-DDE 2,4'-DDD	1.423 1.142 1.055	1.479 1.135 0.957	CS-3 1.423 1.142 1.055	CS-4 1.479 1.135 0.957			CS-7	1.451 1.139 1.006	3% 0% 7%
	2,4'-DDE 4,4'-DDE	1.423 1.142	1.479 1.135	CS-3 1.423 1.142	CS-4 1.479 1.135			CS-7	1.451 1.139	3% 0%
	2,4'-DDE 4,4'-DDE 2,4'-DDD	1.423 1.142 1.055	1.479 1.135 0.957	CS-3 1.423 1.142 1.055	CS-4 1.479 1.135 0.957			CS-7	1.451 1.139 1.006	3% 0% 7%
	2,4'-DDE 4,4'-DDE 2,4'-DDD 4,4'-DDD	1.423 1.142 1.055 1.079	1.479 1.135 0.957 1.180	CS-3 1.423 1.142 1.055 1.079	CS-4 1.479 1.135 0.957 1.180			CS-7	1.451 1.139 1.006 1.130	3% 0% 7% 6%
Exti	2,4'-DDE 4,4'-DDE 2,4'-DDD 4,4'-DDD 2,4'-DDT	1.423 1.142 1.055 1.079 0.965	1.479 1.135 0.957 1.180 0.832	CS-3 1.423 1.142 1.055 1.079 0.965	CS-4 1.479 1.135 0.957 1.180 0.832			CS-7	1.451 1.139 1.006 1.130 0.899	3% 0% 7% 6% 10%
	2,4'-DDE 4,4'-DDE 2,4'-DDD 4,4'-DDD 2,4'-DDT 4,4'-DDT	1.423 1.142 1.055 1.079 0.965	1.479 1.135 0.957 1.180 0.832	CS-3 1.423 1.142 1.055 1.079 0.965	CS-4 1.479 1.135 0.957 1.180 0.832			CS-7	1.451 1.139 1.006 1.130 0.899	3% 0% 7% 6% 10%
	2,4'-DDE 4,4'-DDE 2,4'-DDD 4,4'-DDD 2,4'-DDT 4,4'-DDT raction Standards	1.423 1.142 1.055 1.079 0.965 0.899	1.479 1.135 0.957 1.180 0.832 0.917	CS-3 1.423 1.142 1.055 1.079 0.965 0.899	CS-4 1.479 1.135 0.957 1.180 0.832 0.917			CS-7	1.451 1.139 1.006 1.130 0.899 0.908	3% 0% 7% 6% 10% 1%

ALS Sample ID H6-18-CCV-0661

Analysis Method EPA 1699 (mod)

Filename 6-180719B37	Inst # HRMS-6	Column HP5MSUSR16	60544H		Run Date 20-Jul-2018 10:51	Approved:	<i>R. Bakthiari</i> e-signature 20-Jul-2018
Target Analytes	Ret. Time		Concentration ng/mL	Response	RRF		
2,4'-DDE	20.95	5 1.56	50.00	3.25E+06	1.423		
4,4'-DDE	21.89	1.54	50.00	2.61E+06	1.142		
2,4'-DDD	22.12	1.63	50.00	2.41E+06	1.055		
4,4'-DDD	23.1	1.61	50.00	2.33E+06	1.079		
2,4'-DDT	23.19	1.64	50.00	2.08E+06	0.965		
4,4'-DDT	24.17	1.56	50.00	1.69E+06	0.899		
Extraction Standards							
4,4'-DDE, 13C12-	21.88	1.55	250.00	1.14E+07	1.926		
4,4'-DDD, 13C12-	23.08	1.56	250.00	1.08E+07	1.819		
4,4'-DDT, 13C12-	24.15	1.54	250.00	9.39E+06	1.583		

ALS Sample ID H6-18-CCV-0662

Analysis Method EPA 1699 (mod)

Filename 6-180719B46	Inst # HRMS-6	Column HP5MSUSR16	60544H		Run Date 20-Jul-2018 16:02	Approved:	<i>R. Bakthiari</i> e-signature 20-Jul-2018
	Ret.	Ion	Concentration	Response	RRF		
Target Analytes	Time	Ratio	ng/mL				
2,4'-DDE	20.95	1.56	50.00	3.86E+06	1.479		
4,4'-DDE	21.88	1.56	50.00	2.96E+06	1.135		
2,4'-DDD	22.12	1.63	50.00	2.50E+06	0.957		
4,4'-DDD	23.1	1.61	50.00	2.30E+06	1.180		
2,4'-DDT	23.18	1.62	50.00	1.62E+06	0.832		
4,4'-DDT	24.15	1.56	50.00	1.21E+06	0.917		
Extraction Standards							
4,4'-DDE, 13C12-	21.88	1.54	250.00	1.30E+07	1.649		
4,4'-DDD, 13C12-	23.08	1.57	250.00	9.73E+06	1.230		
4,4'-DDT, 13C12-	24.15	1.55	250.00	6.59E+06	0.833		

ALS Sample ID H6-18-CCV-0661

Analysis Method EPA 1699 (mod)

Filename 6-180719B37	Inst # HRMS-6	Column HP5MSUSR16	0544H		Run Date 20-Jul-2018 10:51	Approved:	<i>R. Bakthiari</i> e-signature 20-Jul-2018
Target Analytes	Ret. Time		Concentration ng/mL	Response	RRF		
2,4'-DDE	20.95	1.56	50.00	3.25E+06	1.423		
4,4'-DDE	21.89	1.54	50.00	2.61E+06	1.142		
2,4'-DDD	22.12	1.63	50.00	2.41E+06	1.055		
4,4'-DDD	23.1	1.61	50.00	2.33E+06	1.079		
2,4'-DDT	23.19	1.64	50.00	2.08E+06	0.965		
4,4'-DDT	24.17	1.56	50.00	1.69E+06	0.899		
Extraction Standards							
4,4'-DDE, 13C12-	21.88	1.55	250.00	1.14E+07	1.926		
4,4'-DDD, 13C12-	23.08	1.56	250.00	1.08E+07	1.819		
4,4'-DDT, 13C12-	24.15	1.54	250.00	9.39E+06	1.583		

ALS Sample ID H6-18-CCV-0662

Analysis Method EPA 1699 (mod)

Filename 6-180719B46	Inst # HRMS-6	Column HP5MSUSR16	0544H		Run Date 20-Jul-2018 16:02	Approved:	<i>R. Bakthiari</i> e-signature- 20-Jul-2018
Target Analytes	Ret. Time		Concentration ng/mL	Response	RRF		
2,4'-DDE			50.00	3.86E+06	1.479		
4,4'-DDE	21.88		50.00	2.96E+06	1.135		
2,4'-DDD			50.00	2.50E+06	0.957		
4,4'-DDD	23.1	1.61	50.00	2.30E+06	1.180		
2,4'-DDT	23.18	1.62	50.00	1.62E+06	0.832		
4,4'-DDT	24.15	1.56	50.00	1.21E+06	0.917		
Extraction Standards							
4,4'-DDE, 13C12-	21.88	1.54	250.00	1.30E+07	1.649		
4,4'-DDD, 13C12-	23.08	1.57	250.00	9.73E+06	1.230		
4,4'-DDT, 13C12-	24.15	1.55	250.00	6.59E+06	0.833		

SECTION 5: QC SAMPLE DATA

Including:

- Laboratory Method Blank Analysis Reports
- Laboratory Control Sample Analysis Reports
- Matrix Spike Analysis Reports
- Other QC Sample Analysis Reports (where applicable)

					Ā	ALS I	_ife sciences			
				Lal	borator	y Meth	nod Blank Analysi	s Report		
ALS Sample ID Analysis Method Analysis Type	Method Blank WG2815918-1 EPA 1699 (mod) Blank QC						Sampling Date Extraction Date Sample Size Percent Solids Split Ratio	n/a 6-Jul-18 2 n/a 1	g	Approved: <i>R. Bakthlari</i> e-signature 20-Jul-2018
Run Information		Run 1								
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column		6-1807191 20-Jul-18 1020 1 ng/g HRMS-6	14:22 uL	R160544H						
		Ret.	Conc.	EDL	EMPC					
Target Analytes		Time	ng∕g	ng/g Flags	ng/g	LQL				
2,4'-DDE		NotFnd	< 0.0049	0.0049	U	1.0				
4,4'-DDE		21.89	0.0350	0.0086	J	1.0				
2,4'-DDD		NotFnd	< 0.015	0.015	U	1.0				
4,4'-DDD		NotFnd	< 0.010	0.010	U	1.0				
4,4'-DDT		NotFnd	< 0.013	0.013	U	1.0				
Extraction Standards	ng									
4,4'-DDE, 13C12-	125	21.88	84	47-160						
4,4'-DDD, 13C12-	125	23.08	82	5-150						
4,4'-DDT, 13C12-	125	24.15	84	5-120						
EDL LQL M U		Lower Qua Indicates	antification that a pea		on the lowes anually integ	t calibrati rated.	easured background noise fo on level corrected for sample e EDL.	-		
		indicate - t	bot a tor-	tot opolyto ·····	dotostod -	low the -	alibrated samaa			
J R			-				alibrated range. I did not meet the acceptanc	e criterion.		
EMPC		Estimated	Maximum	n Possiblo Conc	contration	-1	letection limit due to interfer		d anitarian failuna	

ALS Sample ID WG2815918-2 Analysis Method Extraction Date 6-Jul-18 Sample Size 1 Approved: Analysis Type LCS Sample Size 1 n/a R. Bakthiari Sample Matrix QC Split Ratio 1 20-Jul-2018 Run Information Run 1 20-Jul-2018 20-Jul-2018 Filename 6-180719840 20-Jul-18 21:43 Run Date 20-Jul-18 1:4 4 Dilution Factor 1 1 1 Analysis Units % 1 1 1 Rurunt - Column HRMS-6 HP5MSUSR160544H 1 1	Sample Name ALS Sample ID Analysis BType Sample Matrix Laboratory Control Samyle WG2B15018-2 C Sample ID WG2B15018-2 LCS Sample ID Extraction Date Percent Solids n/a Approved: Analysis Percent Solids Approved: In/a Approved: Percent Solids Approved: In/a	Sample Name ALS Sample ID Analysis BType Sample Matrix Laboratory Control Samyle WG2B15018-2 C Sample ID WG2B15018-2 LCS Sample ID Extraction Date Percent Solids n/a Approved: Analysis Percent Solids Approved: In/a Approved: Percent Solids Approved: In/a Approved: In/a						ALS Life sciences	6		
ALS Sample ID Analysis Mithon Analysis Mithon Analysis Stype WG28198-2 LCS Kar Analysis Distribution Analysis Mithon CS Extraction Date Percent Solids o-Jul-18 n/a Approved: R. R. Rikthari n/a Approved: R. R. Rikthari n-e-signature 20-Jul-2018 Run Information Ru Ru I Zet Run Date No 1 Zet Run Date Run Date 6-18071198-U - 20-Jul-18 Extraction Date I I Zet Run Date I Run Date 1202 L Standard % I Dilution Factor 1 I Analysis Units % I Standard Right Mithon (1) Percent Solids I August Units % I Instrument - Column I I Quiton Factor 1 I August Units % I Standard 102 10 Quiton Factor I I August Units % I Standard 102 10 Quiton Factor I I Quiton Factor I I Quiton Factor 10 2-123 Quiton Factor 10 2-123 Quiton Factor 10 2-120	ALS Sample ID Analysis Mithon Analysis Mithon Analysis Stype WG28198-2 LCS Kar Analysis Distribution Analysis Mithon CS Extraction Date Percent Solids o-Jul-18 n/a Approved: R. R. Rikthari n/a Approved: R. R. Rikthari n-e-signature 20-Jul-2018 Run Information Ru Ru I Zet Run Date No 1 Zet Run Date Run Date 6-18071198-U - 20-Jul-18 Extraction Date I I Zet Run Date I Run Date 1202 L Standard % I Dilution Factor 1 I Analysis Units % I Standard Right Mithon (1) Percent Solids I August Units % I Instrument - Column I I Quiton Factor 1 I August Units % I Standard 102 10 Quiton Factor I I August Units % I Standard 102 10 Quiton Factor I I Quiton Factor I I Quiton Factor 10 2-123 Quiton Factor 10 2-123 Quiton Factor 10 2-120	ALS Sample ID Analysis Mithon Analysis Mithon Analysis Stype WG28198-2 LCS Kar Analysis Distribution Analysis Mithon CS Extraction Date Percent Solids o-Jul-18 n/a Approved: R. R. Rikthari n/a Approved: R. R. Rikthari n-e-signature 20-Jul-2018 Run Information Ru Ru I Zet Run Date No 1 Zet Run Date Run Date 6-18071198-U - 20-Jul-18 Extraction Date I I Zet Run Date I Run Date 1202 L Standard % I Dilution Factor 1 I Analysis Units % I Standard Right Mithon (1) Percent Solids I August Units % I Instrument - Column I I Quiton Factor 1 I August Units % I Standard 102 10 Quiton Factor I I August Units % I Standard 102 10 Quiton Factor I I Quiton Factor I I Quiton Factor 10 2-123 Quiton Factor 10 2-123 Quiton Factor 10 2-120					Labo	ory Control Sample Analy	sis Report		
Filename 6-1807198-0 Run Date 20-Jul-18 12:43 Final Volume 1020 uL Dilution Factor 1 - Analysis Units % - Instrument - Column HRMS-6 HP5MSUST60544H Ret Limits Target Analytes 9 7 me % Rec Flags 2,4-0DE 25 20.9 101 24-123 4,4-0DE 25 20.10 20-120 2,4-0DE 25 20.3 0 50-120 2,4-0DE 25 20.3 0 50-120 2,4-0DE 25 20.10 20-120 10 2,4-0DE 25 20.10 20-120 10 2,4-0DE 25 20.10 20-120 10 10 2,4-0DE 25 20.10 10 20-120 10 2,4-0DE 25 20.10 10 50-120 10 2,4-0DE 25 20.10 10 50-120 10 4,4-0DE 25	Filename 6-18071 940 Run Date 20-Jul-18 12:43 Final Volume 1020 uL Diluto Factor 1 Analysis Units % Instrument - Column HRMS-6 HRMS-6 HP5MSUSR160544H Target Analytes ng Time $k_{1}^{2} \cdot DE$ 25 20.95 101 2,4'-DDE 25 20.95 101 2,4'-DDE 25 20.12 107 2,4'-DDE 25 20.12 107 2,4'-DDE 25 20.12 107 4,4'-DDE 25 20.12 108 4,4'-DDE <th>Filename 6-18071 940 Run Date 20-Jul-18 12:43 Final Volume 1020 uL Diluto Factor 1 Analysis Units % Instrument - Column HRMS-6 HRMS-6 HP5MSUSR160544H Target Analytes ng Time $k_{1}^{2} \cdot DE$ 25 20.95 101 2,4'-DDE 25 20.95 101 2,4'-DDE 25 20.12 107 2,4'-DDE 25 20.12 107 2,4'-DDE 25 20.12 107 4,4'-DDE 25 20.12 108 4,4'-DDE<th>ALS Sample ID Analysis Method Analysis Type</th><th>WG2815918 EPA 1699 (n LCS</th><th>-2</th><th>le</th><th></th><th>Extraction Date Sample Size Percent Solids</th><th>6-Jul-18 1 n/a</th><th>n/a</th><th><i>R. Bakthiari</i> e-signature</th></th>	Filename 6-18071 940 Run Date 20-Jul-18 12:43 Final Volume 1020 uL Diluto Factor 1 Analysis Units % Instrument - Column HRMS-6 HRMS-6 HP5MSUSR160544H Target Analytes ng Time $k_{1}^{2} \cdot DE$ 25 20.95 101 2,4'-DDE 25 20.95 101 2,4'-DDE 25 20.12 107 2,4'-DDE 25 20.12 107 2,4'-DDE 25 20.12 107 4,4'-DDE 25 20.12 108 4,4'-DDE <th>ALS Sample ID Analysis Method Analysis Type</th> <th>WG2815918 EPA 1699 (n LCS</th> <th>-2</th> <th>le</th> <th></th> <th>Extraction Date Sample Size Percent Solids</th> <th>6-Jul-18 1 n/a</th> <th>n/a</th> <th><i>R. Bakthiari</i> e-signature</th>	ALS Sample ID Analysis Method Analysis Type	WG2815918 EPA 1699 (n LCS	-2	le		Extraction Date Sample Size Percent Solids	6-Jul-18 1 n/a	n/a	<i>R. Bakthiari</i> e-signature
Run Date 20-Jul-18 12:43 Final Volume 1020 uL Diluto Factor 1 Analysis Units % Instrument - Column HRMs-6 HP5MSUST40544H Target Analytes ng ng Time ket Limits 2,4'-DDE 25 20.95 101 2,4'-DDE 25 21.88 99 50-120 2,4'-DDE 25 21.10 50-120 4,4'-DDE 25 21.30 60 4,4'-DDE 25 21.10 50-120 4,4'-DDE 25 21.10 50-120 4,4'-DDE 25 21.30 80 10-20 4,4'-DDE 25 21.30 80 10-20 4,4'-DDE, 13C12 125 21.88 89 12-20 <	Run Date 20-Jul-18 $2:4:3$ Final Volume 1020 uL Diluto Factor 1 Analysis Units % Instrument - Column RRM5-6 Ret. Limits Analysis Units % Lastrument - Column RRM5-6 Ret. Limits Analysis Units % Lastrument - Column RRM5-6 Ret. Limits Analysis Units % Lastrument - Column Ret. Lastrument - Column Ret. Ket. Limits Lastrument - Column Ret. Lastrument - Column Ng Lastrument - Column S Lastrument - Column Ng Lastrument - Col	Run Date 20-Jul-18 12:43 Final Volume 1020 uL Diluto Factor 1 Analysis Units % Instrument - Column RRM5 6 Ret. Limits Analysis Units % Lastrument - Column RRM5 6 Ret. Limits Analysis Units % Lastrument - Column RRM5 6 Ret. Limits Audysis Units % Lastrument - Column Ret. Lastrument - Column Ng Lastrument - Column S Lastrument - Column Ng Lastrument - Colument <td< td=""><td>Run Information</td><td></td><td>Run 1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Run Information		Run 1						
Target Analytes Ng Time % Re Flags 2,4'-DD 25 2.0.5 2.1.2 2.1.2 4,4'-DD 25 2.1.2 3.0.2 2,4'-DD 25 2.1.2 3.0.2 4,4'-DD 25 2.1.2 3.0.2 4,4'-DD 25 2.1.2 3.0.2 4,4'-DD 25 2.1.2 3.0.2 5 2.1.2 3.0.2 3.0.2 4,4'-DD 25 2.1.2 3.0.2 4,4'-DD 25 2.1.2 3.0.2 4,4'-DD 25 2.1.2 3.0.2	Target Analytes ng Time % Re Flags 2,4'-DD 25 20.05 21.12 21.22 4,4'-DD 25 21.22 20.7 50.120 2,4'-DD 25 22.12 10.7 50.120 4,4'-DD 25 23.10 20.8 20.120 4,4'-DD 25 23.10 20.120 20.120 Fatration Stands 10 51.200 51.200 4,4'-DDC,13C12 125 21.88 25.120	Target Analytes ng Time % Re Flags 2,4'-DD 25 20.5 21.2 21.2 4,4'-DD 25 21.2 20.7 50.12 2,4'-DD 25 21.2 10.7 50.12 4,4'-DD 25 21.0 30.12 10.1 4,4'-DD 25 21.0 30.12 10.1 Fatration Stands 10 21.2 10.1 10.1 4,4'-DDC,13C12 125 21.8 25.12 10.1	Run Date Final Volume Dilution Factor Analysis Units		20-Jul-18 1020 u 1 %	12:43 JL	50544H				
2,4'-DDE 25 20.95 101 24-123 4,4'-DDE 25 21.88 99 50-120 2,4'-DDD 25 22.12 107 50-120 4,4'-DDD 25 23.10 96 42-120 4,4'-DDT 25 24.17 96 50-120 Extraction Standards n 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200	2,4'-DDE 25 20.95 101 24-123 4,4'-DDE 25 21.88 99 50-120 2,4'-DDD 25 22.12 107 50-120 4,4'-DDD 25 23.10 96 42-120 4,4'-DDT 25 24.17 96 50-120 Extraction Standards ng 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200	2,4'-DDE 25 20.95 101 24-123 4,4'-DDE 25 21.88 99 50-120 2,4'-DDD 25 22.12 107 50-120 4,4'-DDD 25 23.10 96 42-120 4,4'-DDT 25 24.17 96 50-120 Extraction Standards m 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200			Ret.	Li	mits				
4,4'-DDE 25 21.88 99 50-120 2,4'-DDD 25 22.12 107 50-120 4,4'-DDD 25 23.10 96 42-120 4,4'-DDT 25 24.17 96 50-120 Extraction Standards 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200	4,4'-DDE 25 21.88 99 50-120 2,4'-DDD 25 22.12 107 50-120 4,4'-DDD 25 23.10 96 42-120 4,4'-DDT 25 24.17 96 50-120 Extraction Standards ng 4,4'-DDE, 13C12 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200	4,4'-DDE 25 21.88 99 50-120 2,4'-DDD 25 22.12 107 50-120 4,4'-DDD 25 23.10 96 42-120 4,4'-DDT 25 24.17 96 50-120 Extraction Standards m 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200	Target Analytes	ng	Time	% Rec	Flags				
2,4'-DDD 25 22.12 107 50-120 4,4'-DDD 25 23.10 96 42-120 4,4'-DDT 25 24.17 96 50-120 Extraction Standards n 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200	2,4'-DDD 25 22.12 107 50-120 4,4'-DDD 25 23.10 96 42-120 4,4'-DDT 25 24.17 96 50-120 Extraction Standards m 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200	2,4'-DDD 25 22.12 107 50-120 4,4'-DDD 25 23.10 96 42-120 4,4'-DDT 25 24.17 96 50-120 Extraction Standards m 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200									
4,4'-DDD 25 23.10 96 42-120 4,4'-DDT 25 24.17 96 50-120 Extraction Standards ng	4,4'-DDD 25 23.10 96 42-120 4,4'-DDT 25 24.17 96 50-120 Extraction Standards ng	4,4'-DDD 25 23.10 96 42-120 4,4'-DDT 25 24.17 96 50-120 Extraction Standards ng 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200									
4,4'-DDT 25 24.17 96 50-120 Extraction Standards ng 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200	4,4'-DDT 25 24.17 96 50-120 Extraction Standards ng 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200	4,4'-DDT 25 24.17 96 50-120 Extraction Standards ng 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200									
Extraction Standards ng 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200	Extraction Standards ng 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200	Extraction Standards ng 4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200									
4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200	4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200	4,4'-DDE, 13C12- 125 21.88 82 26-169 4,4'-DDD, 13C12- 125 23.08 89 13-200			24.17	70 50	-120				
4,4'-DDD, 13C12- 125 23.08 89 13-200	4,4'-DDD, 13C12- 125 23.08 89 13-200	4,4'-DDD, 13C12- 125 23.08 89 13-200	Extraction Standards	ng							
			4,4'-DDE, 13C12-		21.88	82 26	-169				
4,4'-DDT, 13C12- 125 24.15 88 13-200	4,4'-DDT, 13C12- 125 24.15 88 13-200	4,4'-DDT, 13C12- 125 24.15 88 13-200									
			4,4'-DDT, 13C12-	125	24.15	88 13	-200				

SECTION 6: INTERNAL RECORDS

Including:

- Prep Logs
- Independent calculation checks
- Others as listed below:

	Extraction Wo	rkup She	eet		
Batch ID:	WG2815918	Ana	alysis:	NIST - O	CP (HR)
Prep Procedure: BU-T	M-1110/BU-TP-2103				6
	Radnika Menon		Date:	6-July-	2018
	SUBSAMPLING			BATCH T	RACKING
Sample I.D.	Client I.D.		ubsample Size (g)		Date/Time/Initials
WG2815918-1	Method Blank	6	00	Subsampling:	RM 3:300
WG2815918-2	Laboratory Control Samp	ole 🗧	1.07	Client Labels Checked:	RM 3:30pm
WG2815918-3	Extraction and Injection S	TD.		Balance ID:	3955
L2125039-1	NIST 1944 (A)	0	1.04	Samples Spiked	Msin
L2125039-2	NIST 1944 (B)		2.06		2 7 1 10
				Soxhlet Start Time:	6-5-1-18 4:20PM/INSM
				Soxhlets Reflux Properly:	MSM
				Soxhlet End Time:	7-5-1-18 09:30
				Rotovap Reduction:	MKM
				Rotovap Temp Verified:	MSM
		3		Split:	
				GPC - run set up:	
				Rotovap - post GPC:	
				Silicarb Column:	JA2 10-July-20
				Rotovap - post silicarb:	10-JUM-201
				1	
				N-Evap Temp Verified:	10-July-2019
				1	
				Micro/Robo Vial:	10-July-2019
		a			
					4
	-			1	
	-			Lipid Analysis:	
				1	

Batch ID:	WG2815918	1.22	
OCP Extraction Stand	dard:	(Checkmark)	
Sample I.D.	Volume (ul)	Spiked	Syringe
WG2815918-1	20		ID: 137
WG2815918-2	20		
WG2815918-3	20		Standard: HROCP-ES#1-023P
L2125039-1	20		
L2125039-2	20		Date &
			Initials: 6-July-2018
			Spike Witnessing
		-	Chemist:
		-	Witness's Initials
			Witness:
			Witness's Initials
			Correct Syringe Obtained:
			Witness's Initials
			Correct Standard Obtained: Witness's Initials
			Correct Technique Followed:
]
S			-
			-
			1
]
]
OOD Native Otavalant			Syringe ID:

			ID:	$\alpha \cup \alpha$	
OCP Native Standard	l:	(Checkmark)	Standard:		1
Sample I.D.	Volume (ul)	Spiked	7	HROCP-NS#1- OBB	
WG2815918-2	20	V	Date &		
WG2815918-3	20		Initials:	6- JUIY-2018	I WISMA
			1		

Batch ID: WG2815918

OCP Injection Stand	ard:	(Checkmark)	-	
Sample I.D.	Volume (ul)	Spiked	Syringe 0	
WG2815918-1	20		ID: 190	
WG2815918-2	20		НРОСС	P-15#1-014B
WG2815918-3	20		Standard:	-13#1-0(12
L2125039-1	20			
L2125039-2	20		Date &	nd ho
			Initials: 10-July-2	las MP
				Chemist's Initials
			Correct Syringe Obtained:	AP
]	Chemist's Initials
			Correct Standard Obtained:	HP .
				Chemist's Initials
			Correct Technique Followed:	AP
			1	
]	

Reagent Lot Numbers:

Reagent	Lot#	Manufacturer
Acetone	182800	
Hexane	122082	
DCM	103227	
Toluene	103253	
Nonane	ORG-WAKONON-	
1:1 DCM:HEX	ORG-DH2-	
Sodium Sulphate	ORG-SSU-1872	
Acid Silica	ORG-ASI-	/2
Neutral Silica	ORG-NSI-	
Alumina	ORG-ALU-	
2% Deactivated Silica	ORG-2%DAS- 193	
Chromacarb	ORG-CC- 225	

Comments:

NOTE: Label and Save All Col	umns.

Batch ID:	WG2815918	
-----------	-----------	--

Procedure: Extraction: - Subsample size = 2g - Mix with sodium sulphate (Use enough sodium sulphate and mixing to create a free-flowing mixture.) - Spike Extraction and Native Standards. - Soxhlet extract in DCM. - Roto-vap down to ~2ml - 1mL Pass through OCP Silicarb clean up -Sili Carb Column - Load sample with 3x1mL hexane rinses - F1 = 25 mL of Hexane - F2 =250mL of 1:1 DCM:Hexane -Reduce F2 to 1mL, vortex and transfer to robovial - Spike injection standard and submit FV=1020ul Approval of Deviation from Standard Method (Batch Writer): Procedure does not deviate from Standard Method. Approved (Supervisor/Manager): Procedure does deviate from Standard Method.

Analysis:			Prep Analyst:				
			Date:				
	Very Good	Meets Maihad Dog	Some Outliers	Door	rowork2 M/by2		
MB							
LCS							
DUP							
ES rec							

			Sample Calculation Rep	ort			
S3 RRF Check	Response of 4.4'-DDE		Concentration of 13C2-4,4'DDE			Approved:	<i>R. Bakthiari</i> e-signature 20-Jul-2018
RRF =		×.				Calculated Value	Value from TargetLyn
RF =	2609863.40	x	250.00		=		x 1.14
	11429690.50		50				
ng =	Response of 13C12-4,4'DDE	×.	Mean RRF	*	Sample Size		
	Response of 13C12-4,4'DDE		Mean RRF	*	Sample Size		
ng∕g =	2832138.5	×	125			= 83.374	83.4
ng/g =		×.		*	2.01	= 83.374	83.4
		× .				= 83.374	83.4
Calculation of 13 2125039-1	1855507.9 3C12-4,4'-DDE Recovery in Response of 13C12-4,4'-DDE		1.14 ng of 13C12-PCB-101	*		= 83.374	83.4
alculation of 13 2125039-1			1.14 ng of 13C12-PCB-101	*	2.01	= 83.374	83.4
Calculation of 13 2125039-1	1855507.9 3C12-4,4'-DDE Recovery in Response of 13C12-4,4'-DDE	× .	1.14 ng of 13C12-PCB-101 Mean RRF 50	*	2.01	= 83.374	83.4